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The question of the a priori restriction of computational accuracy in order to 
obtain stable solutions of inverse problems by the methods of high-precision 
regularization is posed. 

As is well known, inverse problems in field theory, in particular, inverse problems of 
heat conduction (IPHC), are improperly posed problems because the cause-effect coupling be- 
tween the input and output parameters of the object under study breaks down. This means that 
in solving them all or at least one of the Hadamard conditions for a problem to be properly 
posed (existence, uniqueness, or stability) may not hold [i], i.e., the regularity of the 
solutions of these problems may break doom. Although in principle the questions of the ex- 
istance and uniqueness of the solutions obtained must be analyzed to the same degree as the 
questions of stability, the main factor giving rise to irregularity of the solutions is in- 
stability (small errors in the starting data can give rise to large errors in the parameters 
identified). 

To determine the paths for solving improperly posed problems Tikhonov's conditions for a 
problem to be properly posed [2], which make it possible to reduce an improperly posed problem 
to a properly posed one, are most important. Since the problem becomes properly posed accord- 
ing to Tikhonov if the set of solutions sought is narrowed, it is sometimes called a condition- 
ally properly posed problem [3], while stability is a conditional problem [4]. 

One way to achieve a proper formulation according to Tikhonov is to restrict the set of 
possible solutions to a compact set [5]. The question of choice of which one is solved based 
on physical considerations in each specific problem. For example, in [6] in solving the prob- 
lem of identification of a constant heat flux with unilateral heating of a flat plate Alifanov 
employed the properties of thermal regularity [7], and this substantially simplified the de- 
termination of the parameter to be identified. In this case, a priori information about the 
character of the function sought (its constancy) was employed to restrict the set of admis- 
sible solutions. By the way, the properties of the identified functions (for example, differ- 
entiability, sign-definiteness, continuity, etc.) are often known beforehand. These properties 
serve as a basis for separating the class of properly posed problems. Methods employing this 
approach are conditionally regular with restriction by formulation [8]. These are V. K. Ivan- 
ov's [4] and M. M. Lavrent'ev's [3] method of quasisolutions, A. N. Tikhonov's method of fit- 
ting the interpretation, the method of quasiinversion [9], and others. A priori information 
about the dependences sought is used quite effectively in the solution of IPHC by the method 
of spectral influence functions [i0], which enables the solution of multiparameter inverse 
problems, which thus far could be solved only by methods based on the general theory of regu- 
larization developed by A. N. Tikhonov ii . In these methods the class of admissible func- 
tions is not prerestricted to a compact set, but rather the functions sought are required to 
meet certain requirements (for example, smoothness), which ensure that the solutions obtained 
are stable against small changes in the starting data. 

Aside from the methods examined above, conditionally regular methods with restriction on 
the algorithm are widely used [8]. They include, in particular, the methods of inversion of 
the algorithm [6], i.e., methods which assume the possibility of inversion of the solution of 
the direct problem, and methods of successive intervals [12], integral characteristics [13], 
series expansions [14], and iterations, including methods of adjustment [15-17], The stabil- 
ity of the solutions obtained in these methods is ensured by imposing restrictive conditions 
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on the parameters of the conputational algorithms. Restrictions are most often imposed on 
the approximation step (step regularization), the degree of the approximating polynomial 
(power-law regularization), and the number of iterations (iterational regularization). These 
forms of regularization are modifications of the so-called natural regularization [6]. This 
term, on the one hand, may be regarded as suitable, since in order to obtain solutions there 
is no need to change artificially the formulation of the problem or to restrict beforehand the 
set of solutions sought. Regularity here is determined by the natural features of the physi- 
cal process (for example, the effect of regularization of the thermal regime, associated with 
the slowness of the propagation of heat) and "viscous" (damping) properties of computational 
algorithms.~ 

On the other hand, all these methods of regularization actually restrict the accuracy 
of the solutions obtained (by reducing the accuracy of either the mathematical model or the 
computational process). From this viewpoint they can all be referred to "accuracy regulariza- 
ton I' or "regularization by reducing the accuracy." 

The restriction of accuracy, achieved in the solution of inverse problems on analog de- 
vices, is indeed natural, since it is brought about by the comparatively low accuracy of an- 
alog computers (thus, the drawbacks of the latter are replaced by their advantages in solving 
improperly posed problems -- actually experience in the solution of IPHC on analog computers 
indicates that the solutions obtained are stable). 

The question of accuracy regularization, of course, is mentioned here not so much on a 
terminological level, but rather as a rationalization for computational processes employing 
natural (or accuracy) regularization methods. Since in these methods ensuring stability of 
the solutions reduces to restricting the accuracy of the computational process, there must be 
a relationship between the dimensions of the zone of possible instability (we use this term 
to refer to the region encompassing the exact solution, within which the approximate solution 
of the inverse problem is unstable) and the error in the starting data. This relationship, 
found for the object under study takin~ into account the method of solution employed and the 
arrangement of the points of observation, should indicate even before the start of the numer- 
ical experiment the accuracy to which the calculations should be taken, without the risk of 
entering the zone of possible instability mentioned above. 

In this paper we have posed the question of the existence of the above-indicated rela- 
tionship between the restriction on the computational accuracy and the errors in the starting 
information, so that here we do not talk about ways to establish such a relationship, which, 
apparently, will have their own peculiarities, specific to the method employed and the object 
studied. The same concerns also the methods for increasing the accuracy, characteristic for 
one or another method. 

In particular, returning to the method of spectral influence functions mentioned above 
[i0], we note that the combined use of this method with the regionally structural approach to 
the solution of heat problems is an example of a successful combination of high-precision in- 
dicators with good stability of the solutions obtained. This is achieved, on the one hand, 
by obtaining a more correct approximation for the limiting actions sought (the influence func- 
tion contains exact information about the geometry of the object), which together with the 
analytic determination of the main components of the spectral influence functions increases 
the accuracy of identification. On the other hand, the partitioning of the object of study 
into regions and the use of regional spectral influence functions have a regularizing effect 
on the solutions obtained [i0], since the boundary action function within the region can be 
approximated quite coarsely (for example, by a polynomial of degree one to three). At the 
same time, the indicated approximation with respect to the surface of the entire object is 
very accurate and, therefore, has virtually no effect on the accuracy indicators of the para- 
meters identified, In particular, in using this method to solve multiparametric IPHC of de- 
termining the surface thermal effects in a prismatic body with a rectangular cross section 
indications of instability appeared only when the accuracy of the calculations was raised 
up to four decimal places (an error of less than 0.01%). 
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REVIEWS 

THERMAL AND PHYSICAL PROPERTIES OF MAGNETIC FLUIDS 

V. E. Fertman UDC 541.18:532.13+532.61+536.2+536.4+536,6 

The basic physical properties of dilute magnetic colloidal solutions (a new class of 
fluids, in which the interaction of the dispersed phase with an external magnetic field is a 
source of an additional inertial force) were considered in the review [i]. As a result of 
this interaction, it appears to be possible to enhance the transport of heat in a magnetic 
fluid by means of a stationary nonuniform magnetic field, which induces thermomagnetic con- 
vection in a nonisothermal fluid. In the time since the appearance of this review, extensive 
experimental data has become available on the thermal and physical properties of concentrated 
magnetic fluids (volume concentration of the dispersed phase in the interval 0.i ~ ~ ~ 0.20). 
In addition~ new mechanisms enhancing heat transport in concentrated magnetic fluids have 
been identified. One of them is connected with the microscopic mixing of a fluid with rota- 
tion induced by means of solid colloidal particles and aggregates [2]. Rotation can also cause 
macroscopic motion, which affects the transport of heat in a nonisothermal fluid [3]. 

It is of interest to summarize the experimental results obtained in the last few years 
on the thermal and physical properties of magnetic fluids for a wide interval of concentra- 
tions of the dispersed phase. 

The thermal regime of the most common device using magnetic fluids (magnetic-fluid 
seals) depends mainly on viscous dissipation inside the working gap [4]. Therefore, we also 
consider in the present review internal friction in magnetic fluids for ~trong shear deforma- 
tions in the presence of a magnetic field. 

The technology for obtaining magnetic fluids whose dispersed phase is single-domain mag- 
netite (Fes04) particles is the most developed. The mass per unit volume of fluid is composed 
of the masses of three components: 
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